Remark on Sheffer Polynomials

S. J. Rapeli ${ }^{\text {a }}$, Pratik Shah ${ }^{\text {b }}$, A. K. Shukla ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Mathematics \mathcal{E} Humanities, S. V. National Institute of Technology, Surat-395 007, India
${ }^{b}$ Department of Mathematics, C.K. Pithawalla College of Engineering \& Technology,Surat-395 007, India

Abstract

This paper deals with some theorems on Sheffer A-type zero polynomial sets.

1. Introduction

A polynomial set $p_{n}(x)$ is said to be of Sheffer A-type zero if and only if it has a generating function in the form $[3,12,13]$ as

$$
A(t) \exp (x G(t))=\sum_{n=0}^{\infty} p_{n}(x) t^{n}
$$

where $A(t)$ and $G(t)$ are two formal power series

$$
\begin{aligned}
& A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 ; \\
& G(t)=\sum_{n=0}^{\infty} g_{n} t^{n+1}, \quad g_{0} \neq 0 ;
\end{aligned}
$$

and $J(D) p_{0}(x)=0$ and $J p_{n}(x)=p_{n-1}(x), n \geq 1$; where $J(D)$ is defined as

$$
J=J(D)=\sum_{k=0}^{\infty} a_{k} D^{k+1}, \quad a_{0} \neq 0 \quad \text { and } \quad D \equiv \frac{d}{d x} .
$$

Al Salam and Verma [1] gave the generalized Sheffer polynomials by considering $\phi_{n}(x)$ as a Sheffer A-type zero

$$
\sum_{i=1}^{r} A_{i}(t) \exp \left(\left(x G\left(\varepsilon_{i}(t)\right)=\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}\right.\right.
$$

[^0]where
$$
J(D)=\sum_{k=0}^{\infty} c_{k} D^{k+r}, \quad J(D) \phi_{n}(x)=\phi_{n-r}(x), \quad(n=r, r+1, \ldots)
$$

Thorne [21] obtained an interesting characterization of Appell polynomials by means of Stieltjes integral. Appell sets [17] are hold following equivalent condition:
(i) $p_{n}^{\prime}(x)=p_{n-1}(x), n=0,1,2, \ldots$
(ii)There exists a formal power series $A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad\left(a_{0} \neq 0\right)$ such that

$$
A(t) \exp (x t)=\sum_{n=0}^{\infty} p_{n}(x) t^{n}
$$

Osegove [14] gave the generalization of Appell sets in a different direction. He studied polynomial sets and hold the following property

$$
D^{r} p_{n}(x)=p_{n-r}(x), \quad n \geq r,
$$

where r is a (fixed) positive integer.
Huff and Rainville [11] proved the necessary and sufficient condition for polynomial $p_{n}(x)$. If polynomial $p_{n}(x)$ is generated by $A(t) \psi(x t)$ then a necessary and sufficient condition for $p_{n}(x)$, be a Sheffer A-type $m, m>0$, if $\psi(x t)={ }_{0} F_{m}\left[-; b_{1}, b_{2}, \cdots, b_{m} ; \alpha x t\right]$, where α is a nonzero constant.

Goldberg [10] generalized the above result and proved, if the polynomial set $p_{n}(x)$ is generated by $A(t) \psi(x B(t))$ then a necessary and sufficient condition for $p_{n}(x)$ to be a Sheffer A-type $m, m>0$, is that there exist a positive number r which divides m and numbers $b_{1}, b_{2}, \cdots, b_{r}$ (none zero nor negative integers) such that $p_{n}(x)$ is σ-type zero for $\sigma=D \prod_{k=1}^{r}\left(x D+b_{k}-1\right), D \equiv \frac{d}{d x}$.

Bretti et al.[5] gave Laguerre type Exponentials and generalized Appell polynomials and Dattoli [8] studied the Appell complementary forms. Khan and Raza [20] discussed the families of Legendre-Sheffer polynomials corresponding to two different forms of 2-variable Legendre polynomials. Youn and Yang [22] obtained a differential equation and recursive formulas of Sheffer polynomial sequences utilizing matrix algebra. Dattoli et al.[7] studied Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials. Bor et al.[4] studied on new application of certain generalized power increasing sequences and some interesting results on Laguerre type polynomials were discussed by Djordjević [9].
Let $p_{n}^{(\alpha)}(x)$ be a simple polynomial set and has following generating function $[6,19]$

$$
\begin{equation*}
(1-t)^{-\alpha} F(x, t)=\sum_{n=0}^{\infty} p_{n}^{(\alpha)}(x) t^{n} \tag{1}
\end{equation*}
$$

where $F(x, t)$ is independent on parameter α.
If $F(x, t)=(1-t)^{-1} \exp \left(\frac{-x t}{1-t}\right)$ then this gives the generalized Laguerre polynomials $p_{n}^{(\alpha)}(x)=L_{n}^{(\alpha)}(x)$. [16]

2. Main Results

First we prove the following Lemmas.
Lemma 1: The polynomial set $p_{n}^{(\alpha-\beta n)}(x)$ is generated by

$$
\begin{equation*}
\frac{(1+u(t))^{\alpha}}{1+\beta u(t)} F\left(x, u(t)[1+u(t)]^{2 \beta-1}\right)=\sum_{n=0}^{\infty} p_{n}^{(\alpha-\beta n)}(x) t^{n}, \tag{2}
\end{equation*}
$$

where $u(t)$ is the inverse of $v(t)=t(1+t)^{\beta-1}$, that is, $v(u(t))=u(v(t))=t$.
Proof: Let

$$
\begin{gathered}
(1-t)^{-\alpha} F(x, t)=\left\{\sum_{n=0}^{\infty}\binom{-\alpha}{n}(-1)^{n} t^{n}\right\}\left\{\sum_{n=0}^{\infty} p_{n}(x) t^{n}\right\} \\
\sum_{n=0}^{\infty} p_{n}^{(\alpha)}(x) t^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\binom{-\alpha}{n}(-1)^{n} t^{n+k} p_{k}(x)
\end{gathered}
$$

On making the use of $\binom{-\alpha}{n}=(-1)^{n}\binom{\alpha+n-1}{n}$, for positive integers α and n.

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}^{(\alpha)}(x) t^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\binom{\alpha+n-1}{n} p_{k}(x) t^{n+k} \tag{3}
\end{equation*}
$$

we get

$$
p_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{\alpha+n-k-1}{n-k} p_{k}(x)
$$

On setting α by $\alpha-\beta n$, in equation (3),yields

$$
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\beta n)}(x) t^{n}=\sum_{k=0}^{\infty}\left\{\sum_{n=0}^{\infty}\binom{\alpha+\beta k-1-(\beta-1) n}{n}(t)^{n}\right\} p_{k}(x) t^{k}
$$

On making the use of following identity [15]

$$
\sum_{n=0}^{\infty}\binom{a+b n}{n}\left[\frac{z}{(1+z)^{b}}\right]^{n}=\frac{(1+z)^{1+a}}{1+(1-b) z^{\prime}}
$$

and afterwords setting $a=\alpha+\beta k-1, b=-(\beta-1)$ and $z=u(t)$,this yields

$$
\sum_{n=0}^{\infty}\binom{\alpha+\beta k-1-(\beta-1) n}{n} t^{n}=\frac{(1+u(t))^{\alpha+\beta k}}{1+\beta u(t)} .
$$

This can be easily written in following form as

$$
\begin{gathered}
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\beta n)}(x) t^{n}=\frac{(1+u(t))^{\alpha}}{1+\beta u(t)} \sum_{k=0}^{\infty} p_{k}(x)\left[t(1+u(t))^{\beta}\right]^{k}, \\
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\beta n)}(x) t^{n}=\frac{(1+u(t))^{\alpha}}{1+\beta u(t)} \sum_{k=0}^{\infty} p_{k}(x)\left[u(t)(1+u(t))^{2 \beta-1}\right]^{k} .
\end{gathered}
$$

Thus

$$
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\beta n)}(x) t^{n}=\frac{(1+u(t))^{\alpha}}{1+\beta u(t)} F\left(x, u(t)(1+u(t))^{2 \beta-1}\right)
$$

This leads the proof.
Lemma 2: The polynomial set $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ is generated by

$$
\begin{equation*}
\frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} F\left(x, y, u(t)[1+u(t)]^{2(\gamma+\delta)-1}\right)=\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y) t^{n} \tag{4}
\end{equation*}
$$

where $u(t)$ is the inverse of $v(t)=t(1+t)^{\gamma+\delta-1}$, that is, $v(u(t))=u(v(t))=t$.

Proof: Let

$$
\begin{gathered}
(1-t)^{-\alpha-\beta} F(x, y, t)=\left\{\sum_{n=0}^{\infty}\binom{-\alpha-\beta}{n}(-1)^{n} t^{n}\right\}\left\{\sum_{n=0}^{\infty} p_{n}(x, y) t^{n}\right\} \\
=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\binom{-\alpha-\beta}{n}(-1)^{n} p_{k}(x, y) t^{n+k}
\end{gathered}
$$

Since

$$
\binom{-\alpha-\beta}{n}=(-1)^{n}\binom{\alpha+\beta+n-1}{n}
$$

where α, β and n are positive integers.
We get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p_{n}^{(\alpha, \beta)}(x, y) t^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\binom{\alpha+\beta+n-1}{n} p_{k}(x, y) t^{n+k} \\
& \sum_{n=0}^{\infty} p_{n}^{(\alpha, \beta)}(x, y) t^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{\alpha+\beta+n-k-1}{n-k} p_{k}(x, y) t^{n}
\end{aligned}
$$

On comparing the coefficient of t^{n}, gives

$$
p_{n}^{(\alpha, \beta)}(x, y)=\sum_{k=0}^{n}\binom{\alpha+\beta+n-k-1}{n-k} p_{k}(x, y)
$$

On replacing α by $\alpha-\gamma n$ and β by $\beta-\delta n$, we get

$$
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y) t^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{\alpha-\gamma n+\beta-\delta n+n-k-1}{n-k} p_{k}(x, y) t^{n}
$$

On further simplification, yields

$$
\sum_{n=0}^{\infty}\binom{a+b n}{n}\left[\frac{z}{(1+z)^{b}}\right]^{n}=\frac{(1+z)^{1+a}}{1+(1-b) z}
$$

Now, setting $a=\alpha+\beta+(\gamma+\delta) k-1, b=-(\gamma+\delta-1)$ and $z=u(t)$, this becomes

$$
\sum_{n=0}^{\infty}\binom{\alpha+\beta+(\gamma+\delta) k-1-(\gamma+\delta-1) n}{n}\left[u(t)(1+u(t))^{\gamma+\delta-1}\right]^{n}=\frac{(1+u(t))^{1+\alpha+\beta+(\gamma+\delta) k-1}}{1+(\gamma+\delta) u(t)}
$$

Or

$$
\sum_{n=0}^{\infty}\binom{\alpha+\beta+(\gamma+\delta) k-1-(\gamma+\delta-1) n}{n} t^{n}=\frac{(1+u(t))^{\alpha+\beta+(\gamma+\delta) k}}{1+(\gamma+\delta) u(t)}
$$

this leads to

$$
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y) t^{n}=\frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} \sum_{k=0}^{\infty} p_{k}(x, y)\left[t(1+u(t))^{\gamma+\delta}\right]^{k}
$$

Finally we arrive at conclusion that

$$
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y) t^{n}=\frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} F\left(x, y, u(t)(1+u(t))^{2(\gamma+\delta)-1}\right)
$$

This completes the proof.
To prove the theorems, we consider $p_{n}(x, y)$ is generated by

$$
\begin{equation*}
A(t) \phi(x H(t), y G(t))=\sum_{n=0}^{\infty} p_{n}(x, y) t^{n} \tag{5}
\end{equation*}
$$

where

$$
\begin{array}{ll}
G(t)=\sum_{n=0}^{\infty} g_{n} t^{n+1}, & g_{0} \neq 0 \\
H(t) & =\sum_{n=0}^{\infty} h_{n} t^{n+1}, \\
h_{0} \neq 0 \\
A(t) & =\sum_{n=0}^{\infty} a_{n} t^{n},
\end{array} \quad a_{0} \neq 0 .
$$

On taking $F(x, y, t)=A(t) \phi(x H(t), y G(t))$, we get

$$
\begin{aligned}
& \frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} A\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right) \phi\left(x H\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right), y G\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right)\right) \\
&=\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y) t^{n}
\end{aligned}
$$

Hence, we can say that if $p_{n}(x, y)$ is a generalized Appell set then $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ is also generalized Appell set.

Theorem 1: if $p_{n}(x, y)$ is Sheffer A-type zero polynomials in two variables then $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ is also Sheffer A-type zero polynomials in two variables.
Proof: Let $p_{n}(x, y)$ be of Sheffer A-type zero polynomials in two variables and there exists a differential operator $J=J(D)=\sum_{k=0}^{\infty} c_{k} D^{k+1}, \quad c_{0} \neq 0, \quad D=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$, where c_{k} are constants, such that $J p_{n}(x, y)=p_{n-1}(x, y)$,for all $n \geq 1$.
Since $p_{n}(x, y)$ is of A-type zero iff $p_{n}(x, y)$ have the generating relation [2] as

$$
\begin{equation*}
A(t) \exp (x H(t)) \exp (y G(t))=\sum_{n=0}^{\infty} p_{n}(x, y) t^{n} \tag{6}
\end{equation*}
$$

From lemma 2 and equation (6), we get

$$
\left.\left.\begin{array}{c}
\frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} A(u(t)) \exp (x
\end{array}\right)\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right) \exp \left(y G\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right)\right)\right)
$$

Theorem 2: If $p_{n}(x, y)$ is a generalized Sheffer set of A-type zero then $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ is also generalized Sheffer set of A-type zero.
Proof: Since $p_{n}(x, y)$ is a generalized Sheffer set of A-type zero and the generating function is given by [18]

$$
\begin{equation*}
\sum_{i=1}^{r} A_{i}(t) \exp \left(\left(x H (\varepsilon _ { i } (t)) \operatorname { e x p } \left(\left(y G\left(\varepsilon_{i}(t)\right)=\sum_{n=0}^{\infty} p_{n}(x, y) t^{n}\right.\right.\right.\right. \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
G(t)=\sum_{i=1}^{\infty} g_{i} t^{i}, \quad g_{1} \neq 0, \\
H(t)=\sum_{i=1}^{\infty} h_{i} t^{i}, \quad h_{1} \neq 0, \\
A_{s}(t)=\sum_{i=0}^{\infty} \alpha_{i}^{(s)} t^{i}, \quad\left(\text { not all } \alpha_{0}^{(\mathrm{s})}\right. \text { are zeros) }
\end{gathered}
$$

On applying lemma 2 , equation (7) takes following form

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{n}^{(\alpha-\gamma n, \beta-\delta n n)}(x, y) t^{n} & =\frac{(1+u(t))^{\alpha+\beta}}{1+(\gamma+\delta) u(t)} \sum_{i=1}^{r}\left[A_{i}\left(u(t)(1+u(t))^{2(\gamma+\delta)-1}\right)\right. \\
& \quad \exp \left(x H\left(\varepsilon_{i} u(t)(1+u(t))^{2(\gamma+\delta)-1}\right) \exp \left(y G\left(\varepsilon_{i} u(t)(1+u(t))^{2(\gamma+\delta)-1}\right)\right)\right]
\end{aligned}
$$

Thus, we can say that $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ is also generalized Sheffer set of A-type zero.
The operator $J=\sum_{k=0}^{\infty} c_{k} D^{k+1}$ is associated with $p_{n}(x, y)$, where $D=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$. This is generated by the function $J(t)=\sum_{k=0}^{\infty} c_{k} t^{k+1}$ and $J(t)$ is the inverse of the function $(H+G)(t)$. The $p_{n}^{(\alpha-\gamma n, \beta-\delta n)}(x, y)$ corresponds to the operator which is generated by the inverse of function $(H+G)(u(t))$.

References

[1] W. A. Al-Salam, A. Verma, Generalized Sheffer Polynomials, Duke Math. J. 37 (1970) 361-365.
[2] B. Alidad, On some problems of Special Functions and Structural Matrix Analysis, Ph.D. thesis, Aligarh Muslim University, Aligarh, India, 2008.
[3] R. P. Boas Jr., R. C. Buck, Polynomial Expansions of Analytic Functions, Rev. ed., Academic Press, New York, 1964.
[4] H. Bor, H. M. Srivastava, W. T. Sulaiman, A new application of certain generalized power increasing sequences, Filomat 26 (4) (2012) 871-879.
[5] G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Computers Math. Appl. 48 (2004) 833-839.
[6] J. W. Brown, On the Sheffer A-type of certain Modified Polynomial sets, Proc. Amer. Math. Soc. 23 (1969) 718-722.
[7] G. Dattoli, M. Migliorati, H. M. Srivastava, Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials, Math. Comput. Modelling 45 (2007) 1033-1041.
[8] G. Dattoli, Appell Polynomial Series Expansions, International Mathematical Forum 5 (14) (2010) 649-662.
[9] G. B. Djordjević, Polynomials of the Laguerre type, Filomat 26 (2) (2012) 261-267.
[10] J. L. Goldberg, On the Sheffer A-type of polynomials generated by $A(t) \psi(x B(t))$, Proc. Amer. Math. Soc. 17 (1966) 170-173.
[11] W. N. Huff, E. D. Rainville, On the Sheffer A-type of polynomials generated by $\phi(t) f(x t)$, Proc. Amer. Math. Soc. 3 (1952) 296-299.
[12] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomial in one variable, Cambridge University Press, UK, 1984.
[13] E. B. McBride, Obtaining Generating Functions, Springer, New York, 1971.
[14] V. B. Osegove, Some External Properties of Generalized Appell Polynomials, Soviet Math. 5 (1964) 1651-1653.
[15] G. Pólya, G. Szegö, Theorems and Problems in Analysis I, Springer-Verlang, Berlin, 1964.
[16] E. D. Rainville, Special Functions, the Macmillan Company, New York, 1960.
[17] I. M. Sheffer, Note on Appell polynomials, Bull. Amer. Math. Soc. 51 (1945) 739-744.
[18] A. K. Shukla, S. J. Rapeli, An Extension of Sheffer Polynomials, Proyecciones Journal of Mathematics 30 (2) (2011) 265-275.
[19] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press, New York, 1984.
[20] Subuhi Khan, Nusrat Raza, Families of Legendre-Sheffer polynomials, Math. Comput. Modelling 55 (2012) 969-982.
[21] C. J. Thorne, A property of Appell Sets, Amer. Math. Monthly 52 (1945) 191-193.
[22] H. Youn, Y. Yang, Differential Equation and Recursive Formulas of Sheffer Polynomial Sequences, ISRN Discrete Mathematics 2011 (2011) 1-16.

[^0]: 2010 Mathematics Subject Classification. 33C65, 33F99, 44A45
 Keywords. Appell sets, Differential operator, Sheffer polynomials
 Received: 11 October 2013; Revised: 21 January 2014; Accepted: 05 February 2014
 Communicated by Hari M. Srivastava
 First Author is thankful to Sardar Vallabhbhai National Institute of Technology, Surat, India for awarding Senior Research Fellowship.
 Email addresses: shrinu0711@gmail.com (S. J. Rapeli), pratikshah8284@yahoo.co.in (Pratik Shah),
 aks@ashd.svnit.ac.in (A. K. Shukla)

